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Abstract 
 

Resting-state MRI (rs-fMRI) is a powerful procedure for studying whole brain neural connectivity. 

In this study we provide the first empirical evidence of the longitudinal reliability of rs-fMRI in 

children. We compared rest-retest measurements across spatial, temporal, and frequency 

domains for each of six cognitive and sensorimotor intrinsic connectivity networks (ICNs) both 

within and between scan sessions. Using Kendall’s W, concordance of spatial maps ranged from 

.60 to .86 across networks, for various derived measures. The Pearson correlation coefficient for 

temporal coherence between networks across all Time one - Time two (T1/T2) z-converted 

measures was .66 (p<.001). There were no differences between T1/T2 measurements in low-

frequency power of the ICNs. For the visual network, within-session T1 correlated with the T2 

low-frequency power, across participants. These measures from resting-state data in children 

were consistent across multiple domains (spatial, temporal, and frequency). Resting-state 

connectivity is therefore a reliable method for assessing large-scale brain networks in children. 
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Introduction 

Efforts in functional magnetic resonance imaging (fMRI) are shifting from research 

focused on specific cognitive domains such as vision, language, memory, and emotion, to 

assess individual differences in neural connectivity across multiple whole-brain networks. 

Resting-state fMRI (rs-fMRI) is being used increasingly to examine functional connections in the 

resting human brain. Rs-fMRI examines temporal correlations between segregated brain regions 

during unconstrained intrinsic activity, or task-free rest, periods. This reveals coherence within 

and between multiple whole-brain networks, and can be used to develop a more comprehensive 

model of human brain connectional architecture (Van Dijk et al., 2009).  

Rs-fMRI is dramatically increasing our understanding of neural development, including 

the sequence of development, and the extent of neural system connectivity in normally and 

abnormally developing infants, children, and adolescents ((reviewed by Uddin et al., 2010)). 

Much more work needs to be done, however, to elucidate processes involved in brain network 

maturation and to relate them to behavioral development. Linking measures of neural and 

behavioral development is complex, as is using deviations in these measures to examine 

developmental disease processes. This undertaking is further complicated by non-neural 

contributions to network development, including physiological influences, environmental factors, 

and genes. Nevertheless, using rs-fMRI, and with advances in imaging science, researchers 

have begun to obtain a more comprehensive picture of neural network development. 

In a short period of time, rs-fMRI has advanced our understanding of organizational 

principles of central nervous system development. For example, Kelly et al. and Fair et al. have 

documented less diffuse local connectivity and increased long-range connectivity with maturation 

(Fair et al., 2009; Kelly et al., 2009). The ordering of network maturation appears to parallel the 

ordering of behavioral maturation3. As is true of myelination, sensorimotor development 

precedes the development of systems underlying higher cognition (Kelly et al., 2009). One 

noteworthy movement in the field is to utilize advanced information-processing techniques to 
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identify brain regions that drive change in one or more neural networks. Gao et al., for example, 

used a graph theoretical measure of node importance to determine that the posterior 

cingulate/retrosplenial cortex plays a central role in the development of the default mode network 

in infants (Gao et al., 2009).  

If rs-fMRI is to be used to advance our theories of neural network development, we must 

establish that the neural network signals that form the basis of rs-fMRI are stable across repeat 

measures. If these signals can be measured robustly despite the variance introduced by other 

sources (e.g., participant state, systemic physiological process such as breathing and 

cardiovascular function and scanner variance), and if these signals are reproducible, we are 

likely measuring reliable indicators of the status of neural networks. Resting-state fMRI 

measures have been shown to be reliable in adults (Meindl et al., 2009; Shehzad et al., 2009; 

van de Ven et al., 2004; Zuo et al., 2010a; Zuo et al., 2010b), but not yet in children or 

adolescents. Previous research has demonstrated that intra-individual variability is greater in 

children than in adults for measures of both behavioral (Williams et al., 2005) and blood 

oxygenation level dependent (BOLD) fMRI signal change (Thomason et al., 2005), rendering a 

systematic study of resting state reliability essential to further investigations in this area.  

Our first goal was to identify reliable, testable intrinsic connectivity networks (ICNs) in a 

large sample of youth from whom peak network locations could be derived for future 

developmental rs-fMRI studies. The second goal was to examine the reliability of rs-fMRI in 

children both within and across sessions. We chose to test reliability in the most widely 

examined cognitive [i.e., default mode (DMN), executive (EN), and salience (SN)], and 

sensorimotor [i.e., auditory (AN), motor (MN), and visual (VN)] networks. We scanned 65 

children and adolescents, about one-third of whom contributed multiple rest scans on either one 

or two different scan dates. Based on our prior experience with rs-fMRI data in children and 

based on adult studies of ICN reliability, we hypothesized that despite greater overall variance, 

children would demonstrate significant test-retest reliability in rs-fMRI ICNs. We compared 
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consistency in spatial topography, temporal connectivity between networks, and frequency 

content of the network time courses, and examined reliability estimates obtained for these 

measures.  

Methods 

Participants 

Sixty-five children and adolescents aged 9-15 (mean=12.5 years, SD= 2.0) were scanned at 

least once, and 21 were scanned either two or three times. For the primary analyses of the 

present study, scans were partitioned into either within-session or between-sessions 

comparisons. For the between-sessions comparison, 15 children were scanned on the same rs-

fMRI protocol using the same hardware (e.g., coil, scanner, etc) separated by 2-3 years. Two of 

these children were removed from analysis due to excess movement (> 1mm) and a technical 

problem identified during data reconstruction, leaving 13 children in this group. For the within-

session comparison, 15 children were scanned with 2 consecutive resting-state scans within one 

scan session. Table 1 presents the number of participants in each comparison group. The within-

session and between session comparison groups were matched for age, t(26) = 1.2, p = .24) and 

gender (2 (1) = .19, p = .66).  

Participants were recruited through their mothers via the Craigslist website and other 

online advertisements and parent networks, and each mother-child pair was compensated 

$25/hour. All participants had no reported history of brain injury, no behavioral indications of 

possible mental impairment, no past or present DSM-IV Axis I disorder, were right-handed, fluent 

in English, and had no reported learning disorders. Parents and children gave informed consent 

and assent, respectively, as approved by the Stanford Institutional Review Board. 

MRI acquisition 

 Magnetic resonance imaging was performed on a 3.0 T GE whole-body scanner. 

Participants were positioned in a purpose-built single channel T/R head coil and stabilized by 

clamps and a bite bar formed with dental impression wax (made of Impression Compound Type 
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I, Kerr Corporation, Romulus, MI) to reduce motion-related artifacts during scanning. During the 

resting-state experiment, participants completed a six-minute scan during which they were 

instructed to lay still with their eyes closed. All resting-state scans were conducted following the 

anatomical localizer, a field inhomogeneity shim, and a 4-minute perfusion scan. For participants 

in the within-session comparison group, the two rest scans were performed back-to-back in the 

same scanning session.  

For this study, 29 axial slices were acquired with 4mm slice thickness (no skip). High-

resolution T2-weighted fast spin-echo structural images (TR = 3000ms, TE = 68ms, ETL=12) 

were acquired for anatomical reference. A T2*-sensitive gradient echo spiral in/out pulse 

sequence was used for all rs-fMRI imaging (TR = 2000ms, TE = 30ms, flip angle = 77°, FOV = 

22 cm, 64 x 64). An automated high-order shimming procedure, based on spiral acquisitions, 

was used to reduce B0 heterogeneity (Kim et al., 2002). Spiral in/out methods have been shown 

to increase signal-to-noise ratio and BOLD contrast-to-noise ratio, and have also been shown to 

reduce signal loss in regions compromised by susceptibility-induced field gradients generated 

near air-tissue interfaces, such as PFC (Glover and Law, 2001). Compared to traditional spiral 

imaging techniques, spiral in/out methods result in less signal dropout and greater task-related 

activation in PFC regions (Preston et al., 2004). A high-resolution volume scan (140 slices, 1mm 

slice thickness) was collected for every participant using a spoiled gradient-recalled (SPGR) 

sequence for T1 contrast (TR = 3000ms, TE = 68ms, TI = 500ms, flip angle = 11°, FOV = 25 cm, 

256 x 256). During the resting-state scan, participants’ heart-rate (HR) and respiration waveform 

were recorded. 

Physiological correction in reconstruction 

Previous research has demonstrated that physiological noise can confound detection of 

neural activation during rs-fMRI. As a result, methods to model and correct for physiological 

effects of noise have been proposed by our group and by others (Birn et al., 2006; Chang et al., 

2009). For the present study, rs-fMRI images were preprocessed using a correction that 
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diminishes BOLD signal fluctuations contributed by respiratory and HR variations. Using the 

method developed by Chang et. al. 2009, this correction reduces the effect of low-frequency 

respiratory variations (i.e., the "envelope" of the respiratory belt waveform) and heart rate 

(average rate in a 6-sec sliding window) by first convolving those independently measured 

signals with appropriate filters and then regressing them out of the time series for each voxel 15. 

Image processing 

Our first goal was to identify rs-fMRI network peaks using a data-driven independent 

components analysis (ICA) approach in a large youth sample. The second goal was to use 

consequent peaks from the ICA analysis to derive seed-based ICNs to study test-retest 

reliability. Thus, participant data were processed along two separate paths. The first used 

Statistical Parametric Mapping software (SPM8; www.fil.ion.ucl.ac.uk/spm/software/spm8/) to 

perform realignment, normalization, and smoothing (6 mm3) for N = 65 rest scans from 65 

different children (summarized in Table 1). These SPM8-preprocessed images were used for the 

group ICA analysis, described below. The second processing path was used to perform ROI-

based connectivity analyses for only those children scanned more than once as part of either the 

within- or between-session groups. Beginning again from the raw-physiology-corrected image 

data, this second path of processing was implemented in AFNI (http://afni.nimh.nih.gov/afni) 

(Cox, 1996). Preprocessing of these data included slice-timing correction, volume registration, 

smoothing (4mm3), bandpass filtering (0.008 < f < 0.15 Hz), and co-registration of functional and 

anatomical images. It is worth noting that the work could have been carried out within either 

software package (SPM or AFNI) and would generate the same results. The choice to use both 

SPM and AFNI for the different paths was primarily based on the convenience of the output file 

types. For example, SPM produces ANALYZE format images useful for subsequent group ICA, 

while AFNI produces time-course files useful for temporal analyses. 

Identification of rs-fMRI networks 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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We used a three-step method to classify rs-fMRI networks. To address the first goal of 

the present study, Steps 1 and 2 were performed to generate network spatial maps in the 

sample of 65 children and adolescents. Each child contributed only one rest scan to the ICA 

analysis; in cases where more than one scan was available, the first was used. These maps 

were used both to visually represent the 6 a priori rs-fMRI networks of interest and to extract 

peak spatial coordinates for the subsequent ROI-based connectivity analysis in Step 3. Details of 

each step follow.  

Step 1 

Movement was plotted and visually inspected for every participant. Time frames 

corresponding to brief movement spikes (> 0.8mm) and lasting less than 5 frames were 

removed. This correction for excursions resulted in low average movement across participants (< 

0.5 mm). In addition, the first three time frames were removed for all participants to allow for 

signal stabilization. In total, no more than 10% of time frames were removed. Remaining time 

frames for all 65 participants (32 females; mean age = 12.5) were concatenated in a group 

independent component analysis (ICA) implemented in Matlab (http://icatb.sourceforge.net) 

using GIFT (Calhoun et al., 2001). Infomax was used to estimate 34 components, after which 

binary spatial templates were used to automatically identify components corresponding to the 6 

networks of interest. A spatial template-matching technique was used (as described in (Greicius 

et al., 2007)). The templates used in the present study were used in previously published work 

(Seeley et al., 2007); these were merely resampled (i.e., changed to the 3D spatial resolution of 

the target ICC and Kendall’s W maps) for the present study. Finally, after an automated 

template-matching algorithm was used to determine those individual components corresponding 

to the default-mode, left and right executive, salience, motor, auditory, and visual resting-state 

networks, single-participant spatial maps were back reconstructed.  

Step 2 
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To visualize the components and extract component peaks for subsequent ROI-based 

connectivity analyses, SPM8 was used to create statistical parametric maps for each network. In 

order to generate single subject spatial maps for each of the 65 participants that were included in 

the group ICA, we used GIFT to implement back reconstruction of single subject spatial maps 

from the raw data. Back-reconstructed single subject spatial maps that corresponded to each 

network of interest (default, executive, salience, motor, visual, auditory) were entered into 

network-specific one-sample t-tests, a method that has been used in a similar manner in 

previous studies (Stevens et al., 2009). Thus, t-tests were based on significance testing for the 

spatial overlap of 65 single-subject spatial maps, with the exception of the executive network, in 

which single-subject spatial maps corresponding to the right (N = 65) and left (N = 65) executive 

network ICA components were combined for a total of 110 spatial maps for that analysis. These 

networks were used to derive maximally significant peaks for seed-based analysis, and were 

otherwise excluded from further consideration in the present analysis. Peak locations from the 

resulting random effects maps are summarized in Table 2.                     

Step 3 

Using a method that is now well established for analyzing rs-fMRI data (Fox et al., 2005), 

in step 3, we generated correlation maps in the subset of participants who were scanned multiple 

times. This method involves extracting timecourse data from a seed region and computing the 

correlation coefficient between that time course and the timecourses of all other brain voxels. 

Following previous methodology (Fox et al., 2005), we extracted our average time-course data 

from the 2-3 most significant foci (from network maps resulting from step 2) within each network 

and averaged these. The trace from each participant’s seed regions (3D spheres with a radius of 

3 mm, centered on the coordinates summarized in Table 2, and averaged across peaks 

summarizing each network) was de-trended for 3 translational and 3 rotational motion regressors 

(AFNI 3dDetrend). This trace was used to calculate the correlation between the seed region and 

the time-course data in all of the other voxels in the brain. Correlation estimates were controlled 
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for estimated translational and rotational motion as well as a white matter nuisance time-course 

(sphere with radius of 3mm, centered at the Talairach coordinate (-27, 9, 24)). In the present 

analysis we did not apply global signal correction because of the concern that it forces the 

presence of anticorrelated networks (Chang and Glover, 2009; Murphy et al., 2009; 

Weissenbacher et al., 2009), which could lead to false interpretation of the observed effects. 

After correlation coefficients were calculated for each voxel in the brain, correlation coefficients 

were converted to a normal distribution by Fischer’s z transformation. We submitted the resulting 

z-converted correlation maps to concordance and mutual information analyses. We used time-

course data for each network for the subsequent temporal and frequency analyses. 

Voxelwise concordance measures  

Intra-class correlation coefficient (ICC (Ruckert et al.)) and Kendall’s W were applied to 

rs-fMRI maps. ICC and Kendall’s W statistics are frequently used to measure test-retest 

reliability in fMRI data (Meltzer et al., 2009; Shehzad et al., 2009). Such concordance measures 

address the likelihood that regions of high group activation in a first scan session would be 

preserved within the participant in a second session, but discriminate between different 

participants. Large (approaching 1) or small (approaching 0) values of the Kendall’s W statistic 

and the ICC indicate stability of inter-participant variability (i.e., participants’ scans are highly 

stable and unique), or instability of the inter-participant variability (i.e., within-participant scans 

are highly variable and there is little between-participant differentiability), respectively. 

Intermediate values of these statistics indicate a greater or lesser degree of between-participant 

differentiability.  

Intra-class correlation 

ICC has been used to assess measurement reproducibility in fMRI (Caceres et al., 2009). 

It is defined as the ratio of the between-subjects variance to the total observed variance (Shrout 

and Fleiss, 1979),(McGraw and Wong, 1996). As Bland and Altman (1996) explain, ICC may be 
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understood as a measure of discrimination between subjects(Bland and Altman, 1996). We 

calculated reliability maps for the third ICC defined by Shrout and Fleiss (1979): 

(3,1)
( 1)

BMS WMS
ICC

BMS k WMS




 
        [1] 

where BMS is the between-subjects mean squared variance, WMS is the within-subject mean 

squared variance, and k is the number of scan repetitions for each participant. Eq. (1) estimates 

the correlation of the subject signal intensities (z-scores) between sessions, modeled by a two-

way analysis of variance (ANOVA), with random subject effects and fixed session effects. The 

ANOVA analysis splits the total mean squared intensity values into BMS and WMS components 

(Koerten et al.). In our analysis, we used k=2, which is the number of scans being considered for 

comparison. In this context, WMS is due to different scans. The measure, ICC(3,1) (Eq. (1)) was 

computed for each voxel.  

Kendall’s W 

Kendall’s W is a statistic based on ranks rather than values and is a robust, 

nonparametric descriptive statistic, with allowable values ranging from 0 (no agreement) to 1 

(complete agreement). If ,i jr  indicates the rank of the jth subject in the ith scan, then W is given 

by the equations: 

        [2] 

where m is number of subjects and n is number of scans, which in our case is 2, and ½[m(n+1)] 

is used as it represents the mean value of all the ranks. The measure W was also computed for 

each voxel. 

Network masks for concordance measures 
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Results of the one-sample t-tests for each network were used to generate network 

masks. A masking procedure was used only to summarize mean concordance statistics. This 

allowed us to report results from a whole brain voxel-wise approach as well as a mean computed 

across voxels that fell within the network (similar to the approach taken by Shehzad et al., 2009). 

To generate masks, network results were thresholded at a level that kept the Family-Wise Error 

(FWE) corrected at p<.05 (i.e., minimum Z = 7.75) with a cluster extent of 30 voxels. Using 

SPM8 smoothing and imcalc functions, the resulting images were smoothed at 6mm and 

binarized whereby all voxels with values > 1 were assigned to a value of 1, and all other voxels 

were assigned a value of zero. Table 3 presents Kendall’s W means for the whole brain and 

within-network masks.  

Temporal analysis of correlations across networks 

BOLD signal time-courses from the seed regions used for seed-based FC analysis 

(described in step 3, above) were extracted from each participant for temporal analysis of 

correlations between the 6 ICNs. Using custom Matlab routines, Pearson correlations were 

computed between all pairs of network time-courses within each scan. In addition, for each scan, 

a single measure of global network coherence was defined as the Fisher z-transformed average 

value of all such pair-wise correlations. The global network coherence reflects the overall 

relatedness of networks within a subject (see Stevens et al., 2009 for an expanded discussion of 

what this parameter might mean in development). Within- and between-session consistency of 

global network coherence was examined using the correlation between T2 and T1 

measurements. Separate Pearson's correlations were computed to examine stability across 

scans for the following three comparisons: (1) T1/T2 within-session (N = 15); (2) T1/T2 between-

session (N = 13); and (3) all T1 data correlated with all T2 data for within-and between-session 

comparisons (N = 28). The goal of this analysis was to examine whether the temporal relations 

between networks are stable across repeated measurements. Interpretations of the correlations 

between specific networks are beyond the scope of the present study, but were analyzed in 
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detail by Stevens and colleagues in a recent study of rs-fMRI networks in children (Stevens et 

al., 2009).  

Temporal frequency analysis 
 

An analysis of low-frequency power was conducted on the ICN time-courses for each 

participant and scan. For each time-course, the low-frequency power was computed as the 

percentage of the total spectral power lying in the range 0.008 < f < 0.08 Hz. Independent 

samples t-tests were then used to test possible differences in low-frequency power across scans 

for each network, and Pearson correlation was used to examine the relationship between T1/T2 

frequency measures for each network.  

Results 

Group ICA 

Figure 1 shows well-established networks that we identified by group ICA analysis of 65 

children/adolescents aged 9-15 years. Peaks for each network are summarized in Table 2 along 

with the nuisance white matter region of interest (ROI) used for seed-based analyses that 

followed the ICA analyses. 

Seed-based connectivity 

In order to show the level of individual variation in each network, we show data from a 

random selection of six individual participants in Figure 2: three from the within-session and 

three from the between-session group. Visual comparison of side-by-side network maps 

suggests that there was greater variance across participants than across scans. To quantify this 

observation, we used Kendall’s W and ICC to apply discriminability and reproducibility statistics 

to spatial maps. 

Rest-retest reliability in children 

Intersession reproducibility was assessed using statistics that compared variance 

between scans versus variance across participants. All test-retest analyses were conducted in a 

sample of 15 children who performed two rs-fMRI scans within one scan session (the within-
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session group), and 13 children who were scanned 2-3 years apart on the same scan system 

and imaging protocol (the between session group). Figure 3 shows measured Kendall’s W and 

ICC values for both groups projected in the axial plane in a whole brain, voxel-wise analysis. 

To provide greater detail on the distribution of ICC values across all brain voxels, ICC 

values are plotted in histograms in Figure 4 for both groups and all networks. We obtained 

positive ICC values for the majority of brain voxels in all comparisons, an indication of stability 

within participants across measurements.  

Mean values for Kendall’s W are listed in Table 3 for both within-network masked ICNs, 

and for all brain voxels. Within-session Kendall’s W mean concordance measures range from .71 

to .78 across a whole brain ROI, and from .71 to .86 in within-network ROIs. Between-sessions 

Kendall’s W mean concordance measures range from .60 to .65 across a whole brain ROI, and 

from .60 to .66 in within network ROIs. One sample t-tests conducted for all networks on 

Kendall’s W and ICC values across the brain were significant at p < .0001. Thus, these observed 

values within and between sessions reflect greater consistency within participants than between 

participants. 

Correlations between network time-courses 

 The temporal dynamics among networks also changes with age (Stevens et al., 2009). In 

the present study we tested whether the global network coherence (defined above as the mean 

pairwise correlation between all 6 ICN time courses) of an individual would be consistent across 

time. We obtained a significant correlation across all Time one - Time two (T1/T2) z-converted 

global network coherence measures, r(28)=.66, p<.001, collapsing within- and between-session 

measurements, indicating consistency in time-course data over repeat measurements. 

Correlation statistics were also significant within each comparison group. That is, for the within-

session T1/T2 comparisons between network z-converted correlation measures, r(15)=.74, 

p=.002, and for the between-session comparisons, r(13)=.64, p=.02. These results are plotted in 

panel D of Figure 5. 
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 Figure 5 also presents the mean correlations separately for each pair of networks and for 

each of the T1 and T2 scans that comprise the within- and between-session comparisons. The 

correlation matrix in Figure 5 is organized into superordinate squares that show the results of 

each pair-wise network comparison. Consistency within superordinate squares indicates that the 

correspondence between pairs of networks in the temporal domain is consistent across repeated 

measures. 

Frequency results 

For all six networks, the proportion of data in the low-frequency power (range 0.008 < f < 

0.08 Hz) across participants did not change significantly across time for within-session 

measurements (all t(15) values < 1.6, all ps > .1) or for between-session measurements (all t(13) 

values < 1.4, all ps > .1; see Fig. 6). However, significant stability across T1/T2 measurements 

within a network was observed only within the visual network for the T1/T2 within-session 

comparison, r(15)=.54, p=.037. 

Discussion 

Our study examined test-retest reliability for a relatively new method, rs-fMRI, which may 

prove invaluable for assessing large-scale, functional neural networks in children and 

adolescents. Considerable anatomical evidence shows that human brain maturation is gradual 

and continuous, characterized by steadily increasing white matter, a general reduction in grey 

matter, extensive synaptic pruning, and elaboration through dendritic arborization (Changeux 

and Danchin, 1976; Giedd et al., 1999; Huttenlocher, 1990; Paus et al., 1999). Less is known, 

however, about human functional brain development.  

By measuring function and connectivity in multiple large-scale brain networks, 

concurrently and without requiring task-compliance, rs-fMRI studies differ from task-based fMRI 

studies that have been the foundation of systems neuroscience imaging research over the past 

two decades. Rs-fMRI studies sample activity in spatially segregated brain regions. This activity 

(measured by BOLD signal) apparently occurs spontaneously, but with a coordinated temporal 
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pattern. Rs-fMRI may be useful for generating data relevant to the development of functional 

neural systems, and may increase our knowledge of developmental neuropsychiatric disorders. 

Already, rs-fMRI has been applied to infants to measure early neural network function (Fransson 

et al., 2007; Lin et al., 2008), to children with developmental disorders ((reviewed by Uddin et al., 

2010)) and has recently been proposed as a measure for predicting brain developmental age 

(Dosenbach et al., 2010). Indeed, analysis of resting-state brain activity has already been useful 

in other populations in which task compliance is not possible, including individuals with disorders 

of consciousness (Vanhaudenhuyse et al., 2010) and chimpanzees (Rilling et al., 2007). This 

tool is made even more powerful as it can be linked to complementary data about the anatomy of 

the brain assessed in the same scan session (Honey et al., 2009).  

The early and extraordinary success of rs-fMRI as a useful method for measuring 

systems-level brain organization has occurred sufficiently quickly that some of the assumptions 

currently being made have yet to be tested. We have experience examining hemodynamic 

responses pertaining to BOLD confounds (e.g., physiology, blood flow, breathing-rate) and have 

contributed to the methodological literature in that area (Chang et al., 2009; Chang and Glover, 

2009; Thomason et al., 2007). Given our past work showing that BOLD in children is inherently 

noisier than it is in adults (Thomason et al., 2005), and given that the best practices for acquiring 

and analyzing resting-state data are still being developed (Van Dijk et al., 2009), it is critical that 

we determine whether resting-state network measurements are stable in children. The present 

data set would have been useful for a developmental study, but there have already been 

important contributions in that area (Dosenbach et al., 2010; Fair et al., 2009; Fair et al., 2007; 

Kelly et al., 2009; Supekar et al., 2009). The present study contributes to this literature by being 

the first to examine temporal stability in rs-fMRI measurements in children. Our results indicate 

that rs-fMRI is likely to primarily reflect features of the underlying biology (i.e., is stable within 

individual even over 2-3 years), with some lesser contributions from aspects of the acquisition 

process (i.e., is even more stable when within session). 
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Using group ICA in a large sample of youth, we identified rs-fMRI networks that have 

been found in previous research on adults. We reported the peak locations for networks 

composed of regions important for executive functioning, salience processing, motor, visual and 

auditory processing, and the default mode. These peaks may be useful for seed-based 

connectivity analyses in future studies of children.  

ICC and Kendall’s W values were predominantly positive across the whole brain volume, 

indicating that participant differentiability outweighed scan variance for most brain areas. The 

general pattern was one of moderately high concordance across spatial ICNs (Table 3), but 

there were some small areas of non-concordance (i.e., where these statistics were negative). 

These could reflect genuine neural developmental changes across the scan interval. For rs-fMRI 

to be effective, it should reliably measure stable features of the underlying biology, but still be 

sensitive to true biological differences. Investigators who conduct longitudinal rs-fMRI studies of 

children may find it useful to assess change using a mutual information approach that would 

quantify change across the interval and test its correspondence to behavioral measures, time, or 

developmental age, for example.  

Concordance measured for spatial maps was greater for within-session than for between-

session comparisons (measured by Kendall’s W and ICC statistics). The distribution ICC 

coefficients across all brain voxels within each network are presented in Fig. 4. It is apparent that 

concordance was higher within sessions than between sessions in this study. Both distributions 

are significantly different than zero, indicating that the networks are stable within individuals, but 

the consistency is greater within sessions. Differences in these distributions could be driven by a 

number of factors that cannot be distinguished within this experimental design, including scan 

session specific biological factors (e.g., temperature), MRI technology factors (e.g., machine 

SNR, field shim), developmental maturation, and psychological factors (e.g., mood). 

In this study we extended the investigation of the spatial reliability of ICNs to examine 

stability in temporal and frequency domains. We obtained a significant correlation across all 
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T1/T2 z-converted time-course correlation measures (i.e., scatterplot in Figure 5D, N = 28). The 

correlation measure used here (global network coherence) may be interpreted as the amount of 

total relatedness between networks, computed by averaging the pairwise correlations between 

networks. We found that measures of the relatedness of network time-course data are reliable 

for individual participants across time. This is among the first work to demonstrate empirically 

that network dynamics are stable reflections of individual differences, indicating that the study of 

network dynamics is a key area for future investigation.  

Resting state low-frequency fluctuations are thought to reflect cyclic modulation of gross 

cortical excitability and network neuronal synchronization (Balduzzi et al., 2008). Here, we 

examined stability of the computed low-frequency power (range 0.008 < f < 0.08 Hz) for each 

ICN at each measurement time. Time one to time two comparisons within network showed 

smaller differences than those observed across ICNs; this relation was significant, however, only 

in the visual network for the T1/T2 within-session comparisons where across participants the 

frequency from time 1 to time 2 was correlated (p < .05). Prior work in adults has shown 

frequency oscillations in visual cortex are impacted by eyes-open versus eyes-closed scanning 

(Yang et al., 2007), and also shown that coherent low-frequency fluctuations are particularly 

strong in visual cortex and posterior midline structures (Zuo et al., 2010a). Having obtained a 

significant result in the frequency domain in the visual cortex could therefore reflect aspects of 

development (i.e. early maturation in sensorimotor cortical networks), or could relate to qualities 

inherent to the visual network that persist across the life-span. It will be useful for future work in 

large samples of children to measure the regional specificity and developmental timing of BOLD-

derived low-frequency fluctuations to refine what is understood about frequency dynamics within 

large-scale brain networks across development. Consistent with what has been observed in 

adults (Zuo et al., 2010a), we obtained significant results in both the temporal and frequency 

domains, further supporting stability in rs-fMRI data.  
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The present results indicate that, if motion is restrained and physiologically generated 

noise is appropriately controlled, rs-fMRI data in children are robust, and reflect meaningful 

characteristics of the underlying neurobiology. This is consistent with adult studies (Shehzad et 

al., 2009; van de Ven et al., 2004; Zuo et al., 2010a; Zuo et al., 2010b), and is the first indication 

that ICN maps are relatively stable in children and adolescents. We found that rs-fMRI 

measurements across spatial, temporal, and frequency domains were reproducible in children. 

This work provides an important demonstration that rs-fMRI measures are viable for studying 

developmental progress and of disease. We provide a critical foundation for using the resting 

state as a marker of large-scale neural network development, and as a basis to compare clinical 

and healthy population samples.  
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Figure Legends 

Figure 1. Spatial renderings of the components examined for reliability. These were identified by applying 

group ICA implemented using GIFT (Calhoun et al., 2001) to data from 65 children and adolescents 
aged 9-15. Components were selected using an automatic template matching technique developed by M. 
Greicius ((for description of the method, see Greicius et al., 2007)). Peaks from these networks are 
reported in Table 2. These may be useful for future studies using ROI seed-based connectivity 
approaches to rs-fMRI data in development. Peaks from these components were used for reliability 
analysis. 
 
Figure 2. Individual seed-based connectivity maps for 6 participants illustrating each comparison (within-
session, and between-session). Connectivity maps are more uniform within participants (rows) than across 
participants (columns). 
 
Figure 3. To generate concordance maps, voxelwise ICN z-maps were compared for scans within session 
and between sessions. Resulting ICC and Kendall’s W statistics are displayed as color maps on axial 
slices. Concordance analysis (verified in both measures) indicates that there is higher participant 
differentiability within session than across sessions. Differentiability across participants is high. Maps are 
coded using different color scales, to distinguish the two complementary statistical approaches. 
 
Figure 4. Histogram of ICC coefficients. Blue bars indicate distribution of correlations for within-session 
comparisons across all brain voxels. Red bars indicate the distribution of ICC values for between-session, 
longitudinal (2-3 years) within subject comparisons. Positive values indicate consistency within participants 
over time. 
 
Figure 5. Correlation matrix and individual participant scatterplot. In the correlation matrix on the left, 
temporal relations between networks were computed for each resting state scan. The resulting correlation 
coefficients are plotted within superordinate squares of the matrix. As an example, superordinate square 
(A) demonstrates that auditory and default mode network time-courses are more highly correlated than are 
motor and salience networks (presented in superordinate square B). It is noteworthy that for this data set, 
the cool and warm colors tend to be consistent within superordinate matrix squares, indicating a degree of 
consistency in the observed temporal relations between networks. Square (C) provides the legend for the 
ordering of the comparisons. The scatterplot on the right (D) demonstrates that participants with high 
correlations between network timecourses remain high across repeat measurement. In contrast, those 
with little correspondence between timecourses remain low. 
 
Figure 6. Consistency in low frequency power. Low frequency power was computed in terms of a ratio with 
respect to the total power for each of the resting networks and within each set of scans that went into 
within and between group comparisons. Column graphs of means are clustered within network to illustrate 
similarities; within-session comparisons are shaded in blue and between-session comparisons shaded in 
green. Error bars show the standard deviation of the mean. The asterisk highlights a significant correlation 
observed between time1-time2 (T1/T2) scans for the visual network within-session comparison, r(15)=.54, 
p =.037. 
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